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Abstract

This paper is concerned with finite element (FE) prediction of forced vibrations using a linear viscoelastic
constitutive vibration damping modelling technique. A combined numerical and experimental investigation
was performed on two bonded aluminium-PMMA (polymethyl methacrylate) plates with different
geometry. Three-dimensional FE models were established using experimentally estimated PMMA material
properties (elastic and damping) from previously published procedures. The viscoelastic material damping
parameters are here validated from the perspective of accurate estimation of constitutive material
properties. Vibration responses were predicted from the FE models and measured on the two composite
plate structures at a large number of points. Comparisons between the numerical FE simulations and
corresponding measured responses show that the estimated material damping properties used as input to
the computations are very accurate and may be treated as independent of the geometry and boundary
conditions of the plate structures, i.e., as constitutive damping parameters.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The trend in development of modern transportation systems is to limit the use of prototypes.
Instead an increasing focus is put on more and more realistic mathematical models allowing for
accurate prediction and optimization of durability and comfort. To correctly predict vibration
responses of various types of structures, the availability of accurate models and reliable material
data is crucial. Whereas, elastic parameters might be adequately well known, the constitutive
modelling of damping is as yet an area of extensive research. One example is the various damping
treatments used to reduce vibration problems. Characterization of the materials used in such
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treatments is therefore one important preparatory step in the design stage. In this context an
important achievement would be the ability to predict vibration responses of arbitrary composite
and built-up structural parts comprising high damping materials together with porous and fibrous
materials.
Linear, solid, materials may, under isothermal conditions, be characterized by using standard

viscoelasticity, which is fully three dimensional, and in the general case, both spatially
inhomogeneous and fully anisotropic. See Simo and Hughes [1] and references therein for a
thorough exposition of the theory of viscoelasticity and internal variables. For the connection
with classical mechanical spring–dashpot models in linear viscoelasticity, see Ref. [2]. For
generalizations of the convolution formulation using a continuous relaxation spectrum, see e.g.,
Ref. [3] and references therein. For connections with fractional derivatives based models/
relaxation functions, see Refs. [4,5].
By using the elastic–viscoelastic correspondence principle, cf. Ref. [2], given as a frequency

domain augmentation of the standard Hooke’s material stiffness matrix, constitutive dynamic
material properties (including damping) may be simulated. The material properties are most often
extracted indirectly from experimental forced vibration responses given in the form of receptance
(vibration displacement response divided by the excitation force in frequency domain) frequency
response functions (FRF) and measured on a test structure made from the studied material. These
(viscoelastic) properties are material specific, contrary to the engineering structural or modal
damping factors traditionally used in vibroacoustic applications, and consequently separated
from the elastic (static) material properties, the boundary conditions (imposed by constraints and
excitation) and the particular vibrational deformation of the material. For isotropic materials the
damping may thus be represented by two complex, frequency-dependent damping functions, cf.
Ref. [3]. The chosen parameterization of the viscoelastic material is somewhat optional, cf. Refs.
[5,6,7–11], but each candidate parameterization must of course be validated in terms of accuracy
in simulation of important viscoelastic phenomena and computational efficiency but also with
respect to simplicity and robustness in extraction/estimation of the material damping parameters.
The damping function estimation methodology and the particular parameterization used in this
paper are described in detail, for homogeneous, isotropic materials, in Refs. [12,13].
In the present paper, vibration response predictions, using finite element (FE) models based on

traditional linear viscoelasticity and experimentally determined elasticities and damping functions,
are demonstrated for two different composite double-layer aluminium-PMMA (polymethyl
methacrylate) plate structures. The predicted responses are compared with vibration responses
measured in an experimental investigation of the two physical plate structures.
The objective of the paper is to validate the (three-dimensional) constitutive damping function

estimation methodology by showing that experimentally determined material properties,
estimated for separate test samples of the material, may then be used for prediction of vibration
responses of arbitrarily shaped pieces of the material, including cases when the same pieces are
used as parts in built-up, composite structures such as, e.g., the studied double-layer plate
structures.
It is assumed that the conditions are isothermal and that the vibrations are small and linear,

which is appropriate in most vibroacoustic applications. It is also assumed that each sub-layer of
the studied plate structures is isotropic and homogeneous. Finally, if not defined directly in the
text, notations used may be found in Appendix A.
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2. Linear viscoelastic material models

Consider a viscoelastic solid with Na discrete relaxation processes, each one characterized by an
internal anelastic strain field variable ea

nðx; tÞ and a corresponding elastic material stiffness matrix
Ca

nðx; tÞ; cf. Appendix A. For this model the stress response sðx; tÞ is defined by the three-
dimensional constitutive relationship, cf. Ref. [1], as

rðtÞ ¼ C0e tð Þ �
XNa

n¼1

Ca
ne

a
nðtÞ; ð1Þ

where the initial (instantaneous) stiffness matrix C0 is such that the strain energy e � C0e > 0 for
arbitrary e: Each internal variable field ea

n is governed by the following evolution equation:

’ea
n ¼
1

tn

ðe � ea
nÞ; lim

t-0
ea

nðtÞ ¼ 0; ð2Þ

where each relaxation time tn > 0 and the reference time, initial condition for vanishing anelastic
internal strain ea

n; is set to t ¼ 0:
The convolution form is given by integrating the evolution equation (2) and substitution of the

solution into the constitutive equation (1) as

rðtÞ ¼ C0eðtÞ �
Z t

0þ

dCðt � uÞ
du

eðuÞ du; ð3Þ

where the material relaxation function CðtÞ is introduced as

CðtÞ ¼ CN þ
XNa

n¼1

Ca
ne

�t=ti ; ð4Þ

where CN is the long-term elastic, fully relaxed, generalized Hooke’s law stiffness matrix
characterizing all linear solids, such that e � CNe > 0 8e; with components defined in Appendix A.
Eq. (4) also yields, by setting t ¼ 0; the relation between the long-term elastic or fully relaxed
stiffness CN and the instantaneous stiffness C0 ¼ CN þ

PNa

n¼1C
a
n:

Throughout this work a discrete relaxation spectrum is employed. The corresponding Laplace
transformed constitutive relation, where s ¼ i2pf ; i2 ¼ �1 and f is the current frequency of
vibration, yields

*rðsÞ ¼ CN þ
XNa

n¼1

sCa
n

s þ bn

" #
*eðsÞ ¼ CN þ CaðsÞ½ 	*eðsÞ; ð5Þ

where bn; n ¼ 1; 2; 3;y;Na; are real positive relaxation frequencies with relaxation times tn ¼
1=bn: For connections with the so-called AHL-theory, see Ref. [7]. Restrictions imposed on the
material parameters by thermodynamics and fading memory are discussed in Refs. [1,5,7,14,
15–17].
However, for isotropic material symmetry, Hooke’s stiffness matrix is simplified and given in

terms of the two independent moduli, here expressed in terms of the shear and Lam!e modulus
CN ¼ GCG þ lCl: The separation chosen here is somewhat optional. In linear viscoelastic
applications to nearly incompressible rubber and polymer materials it is natural and more
common to use the bulk modulus in order to separate the deformation in terms of the volume
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preserving (deviatoric) part and the volume changing (dilatational) part. For large deformations
the material properties may be defined in terms of the invariants of the material stiffness tensor.
The constitutive ð6
 6Þ frequency-dependent material matrix field, for the case of

homogeneous and isotropic materials, is then defined by the corresponding two independent
engineering moduli, with the viscoelastic augmentation for isotropic material damping, in Eq. (5),
formally given by a viscoelastic correspondence principle, cf. Refs. [2,7], as

CaðsÞ ¼ dGðsÞGCG þ dlðsÞlCl ð6Þ

in terms of the two constant matrices CG and Cl; defined in Appendix A, and G; l; dG and dl are,
respectively, the elastic shear modulus, the elastic Lam!e modulus and the two corresponding
complex, frequency-dependent, material damping functions. The four parameters G; l; dG and dl

have thus to be specified for each of the two sub-layers of the plates studied, to fully simulate the
elastic and dynamical properties of the assembled structures. The real, constant ð6
 6Þ matrices
CG and Cl are defined in Appendix A. The isotropic damping functions are parameterized as

dGðsÞ ¼
XNa

n¼1

sA
ðnÞ
G

ðs þ bnÞ
; ð7Þ

dlðsÞ ¼
XNa

n¼1

sA
ðnÞ
l

ðs þ bnÞ
; ð8Þ

where the experimental estimation of the real model parameters bn; A
ðnÞ
G and A

ðnÞ
l are discussed in

Refs. [12,13]. All parameters bn and A
ðnÞ
G are positive and the number, Na; of discrete damping

processes (i.e., the number of terms in Eqs. (7) and (8)), needed to correctly simulate the vibration
damping, depends on the material and on the studied range of the vibration frequency f : The
parameters bn ¼ 1=tn are relaxation frequencies (given in rad/s) corresponding to a discrete
spectrum of positive relaxation times tn; according to Eq. (8). The parameters A

ðnÞ
G and A

ðnÞ
l are

referred to as process amplitudes defining the strength of viscoelasticity of the contributing terms
in Eqs. (7) and (8).

3. Finite element equations of motion

The standard linear time domain, discrete equations of motion for a structure with material
properties are defined by viscoelastic parameters as

M .XðtÞ þ KeXðtÞ þ
Z t

0

Kaðt � tÞXðtÞ dt ¼ FðtÞ; ð9Þ

whereM and Ke are the usual mass and stiffness matrices corresponding to the global, degrees of
freedom, X; of a traditional displacement formulation, while F is the corresponding global load
vector. Eq. (9) differs from the linear, standard, discrete equations of motion in the way that the
traditional damping matrix term, commonly used in vibroacoustic engineering applications, is
substituted by a convolution integral, i.e., a memory term corresponding to the viscoelasticity of
the material, cf. Refs. [5,18]. Here and in the following, the Laplace transform, with respect to the
time variable t; of a field or function is denoted by a tilde above the particular parameter. The
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Laplace (frequency) variable is denoted by s and interpreted as the complex number s ¼ io where
o is the circular frequency in radians per second corresponding to the current frequency of
vibration f in Hz. In the complex frequency domain Eq. (9) is equivalent to

Ke þ s2Mþ *KaðsÞ
� �

*XðsÞ ¼ *FðsÞ: ð10Þ

The complex, frequency dependent, viscoelastic contribution *KaðsÞ to the global stiffness may
be expressed by using standard FE techniques as

*KaðsÞ ¼
Z
O
BTCaB dO; ð11Þ

where O is the volume, in three-dimensional space, occupied by the structure and B ¼ BðxÞ
denotes the matrix field relating the approximate, interpolated (small engineering) strains, at
spatial points x in O; to the global displacement vector X of the FE model.
For the two-layer plate structures studied here Ca is piecewise continuous and defined by

specifying the four parameters G; l; dGðsÞ and dlðsÞ for each of the two sub-layers.
Thus, according to Eq. (11),

*KaðsÞ ¼ *K
PMMA

a ðsÞ þ *K
Al

a ðsÞ; ð12Þ

where the two contributions are determined by separate integration over the non-overlapping sub-
volumes OPlexi and OAl representing, respectively, the PMMA and the Al.
For comparison, the elastic stiffness matrix Ke may be expressed as

Ke ¼
Z
O
BTCNB dO ¼ KPMMAe þ KAle ; ð13Þ

where CN is piecewise continuous and, as in Eq. (5), identical to the zero frequency, generalized
Hooke’s, elastic modulus matrix field of the composite structure.
In the predictions of forced vibration responses presented below the FE equations of motion,

Eq. (10), for each of the two test structures were solved using standard direct frequency by
frequency matrix inversion. Note also that for zero/vanishing damping the resulting vibration
response model, Eq. (10), corresponds to the elastic (undamped) problem.

4. Experimental test cases

4.1. Elastic data, damping properties and FE models used

Material properties were experimentally estimated on separate samples of the PMMA and Al,
at approximately the same temperature (room temperature 241C). The material properties of the
PMMA material, given in Tables 1 and 2, are derived using two test samples (plates 1 and 2) and
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Table 1

Mean values from measurements of elastic data for the PMMA test plate (average temperature 231C, humidity 75%)

E ¼ 3440MPa n ¼ 0:382 r=1181kg/m3
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the procedures discussed in Ref. [13]. The damping parameters of the PMMA, given in Table 2,
are based on vibration measurements in the frequency range 40–500Hz and should therefore not
be considered as representative and complete for simulation of the damping and viscoelasticity of
the PMMA outside this frequency range. In accordance with these limitations forced vibrations
were predicted only for frequencies within this band. However, it is possible to extend this band by
using measured vibrations in an extended frequency interval and adding new dissipation processes
by using the methodology described in Ref. [13].
The material damping of the PMMA, Fig. 1, was further assumed to be associated only with

dGðsÞ; i.e., dlðsÞ was assumed to be zero. The validity of this simplification has been confirmed, for
the studied frequency interval, in a previous paper [12]. Note also that estimated damping data
given here is in good agreement with dynamic material data for Perspex given by Read and Dean
[19]. The material damping of Al is very small, with a loss factor in the order 10�4, and thus
assumed to be negligible in comparison with the damping of the PMMA material.
Elastic (static) material parameters for the Al sample were determined by standard strain-gauge

technique and are given in Table 3.
The FE approximation of each test structure comprised a total of 3120 and 1560 isoparametric

20-node (quadratic) volume elements, respectively, for the connected PMMA and Al layers. The
FE meshes used are indicated with element boundary lines in Figs. 2 and 3 and were designed to
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Table 2

Estimated viscoelastic damping parameters for PMMA

Damping process number ðnÞ Relaxation frequency ðbn=2pÞ Process amplitude ðAðnÞ
G Þ Process amplitude ðAðnÞ

l Þ

1 1.59
 10�1 2.23
 10�1 0.0

2 2.26
 101 2.21
 10�1 0.0

3 8.21
 101 3.27
 10�3 0.0

4 3.14
 102 1.00
 10�4 0.0

5 3.84
 102 1.32
 10�1 0.0

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frequency (Hz)

Is
ot

ro
pi

c 
da

m
pi

ng
 fu

nc
tio

n 
dG

Re(dG)

Im(dG)

Fig. 1. Isotropic material damping function dG for PMMA corresponding to elastic data in Table 1 and AHL damping

parameters given in Table 2.
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accurately represent the structures at frequencies in the frequency interval used for the
experimental PMMA damping estimation.

4.2. Test set-up, environmental conditions and general measurement specifications

Two different, layered test plates were manufactured from sheets of PMMA and Al. The
PMMA sheets used were 7.6mm thick and the Al sheets were 4.2mm. One plate was rectangular,
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Table 3

Mean values from measurements of elastic data for the aluminium test plate (average temperature 251C)

E=73000MPa n ¼ 0:326 r ¼ 2795 kg/m3
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Fig. 2. Measurement points and FE mesh for the layered PMMA-Al plate REC used for validation, using two elements

for the PMMA part and one element for the Al part in the thickness direction.
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Fig. 3. Measurement points and FE mesh for the layered PMMA-Al plate MOD used for validation, using two

elements for the PMMA part and one element for the Al part in the thickness direction.
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520
 300
 11.8mm3, Fig. 2, and will be referred to as REC. The other plate was modified,
630
 300
 11.8mm3 with one edge cut-off 330
 100
 11.8mm3 according to Fig. 3, and will be
referred to as MOD. The sheets were first cut to proper geometry and then bonded together using
standard epoxy glue. The average thickness of the epoxy layer is 0.06mm, according to ultrasonic
measurements, and is included in the PMMA plate model. This is a reasonable approximation as
the material properties of these two material are in the same order, i.e., epoxy have a slightly
higher modulus of elasticity and somewhat lower loss factor, cf. Ref. [19], compared to PMMA.
This small difference in dynamic material data helps to avoid the epoxy layer from acting as an
effective constrained damping layer [20], and the dissipation in the epoxy glue volume will be
small relative to the dissipation in the PMMA volume, due to the small thickness of the epoxy
layer.
The measured and predicted vibrations are here characterized by frequency response functions

(FRFs), in the form of point receptances, Rik ¼ Rikðx; xe; sÞ; defined as quotients between
displacement field component spectra *uiðx; sÞ; at response points x; and corresponding point force
component spectra *Fkðxe; sÞ at excitation points xe on the boundary @O:
The experimental vibrations (normal velocities) were measured in a laboratory using a laser

Doppler vibrometer (LDV) and a standard vibration transfer function measurement technique.
The measurements were made at room temperature 241C in the frequency interval 20–500Hz with
a frequency resolution of 0.5Hz. A number of FRFs (35 for REC and 46 for MOD) distributed
over the outer faces of the PMMA layers were measured (cf. Figs. 2 and 3). During the
measurements, each test plate was suspended, with the face oriented vertically, by two long metal
strings attached at the nodal lines of the first resonance to minimize suspension damping and
simulate stress free boundary conditions, cf. Refs. [19,21]. The non-contacting LDV sensor was
chosen in order to minimize the influence of unwanted mechanical disturbances on the test
objects.
Excitation was imposed through a sting mounted electrodynamic shaker attached (in reality

over a small surface centred) at point 130 on plate REC (cf. Fig. 2) and at point 291 on plate
MOD (cf. Fig. 3). The input force was applied to the Al layer, normal to the surface and measured
by means of a standard force transducer, attached (glued) to the structure according to the set-up
in Ref. [21, Fig. 3.15b].

4.3. Experimental reciprocity

The choice of the LDV sensor for measurement of the vibrations has the advantage of
providing high-quality response data. However, even though this is the case, the measured FRFs
are affected by the fact that the distributed loading differs from an ideal point force (which was
used in the numerical predictions), in an unknown way and to an unknown amount, not counting
inaccuracy of the force gauge measuring the applied force resultant. It is common practice, cf.
Ref. [21], to study and check, for a specific test set-up, the lack of reciprocity, i.e., the difference

between Rik and Rki for different pairs of points on the structure. The reason for this is that
complete reciprocity (symmetry Rik ¼ Rki) would be obtained for an idealized point excitation if
the response could be measured ‘‘at a point’’ and not, as in reality, as an average over a finite
small surface. A vibration FRF measurement may however be of very good quality even though
some lack of experimental reciprocity is observed. Here the observed differences Dik ¼ Rik � Rki
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are used as an indication of the level of agreement that may be expected between predictions and
measurements as point forces has been used in the numerical simulation of the excitation,
provided that we have repeatability in the measurement test set-up.
Lack of reciprocity, observed for a few point pairs on the test plates, is demonstrated in Figs. 4

and 5 for plate REC and Figs. 6 and 7 for plate MOD. Apart from some isolated frequency
ranges, an inspection of Figs. 5–7 shows only small differences in the frequency interval
20–500Hz. For the case in Fig. 4 the lack of reciprocity is more pronounced but not alarming.
To assess the measurement quality, an attempt to evaluate the uncertainty in the measurements

was done. Thus, in connection to reciprocity checks of some pairwise ‘‘reciprocal’’ receptances of
the two test plates, the mean relative difference in peak amplitudes and peak frequencies in the
reciprocal receptances was calculated for all response peaks found in the frequency interval
between 50 and 500Hz. The mean relative difference in peak amplitude, for plate REC, is –0.67%.
The relative difference in peak frequency ‘‘location’’ is �0.19%. The corresponding mean relative
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Fig. 4. Reciprocity check for plate REC between measured receptance FRF (response R33 in z direction at point 223

and excitation in z direction at point 130; solid line) and measured receptance FRF (response R33 in z direction at point

130 and excitation in z direction at point 223; solid-dotted thick line).
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Fig. 5. Reciprocity check for plate REC between measured receptance FRF (response R33 in z direction at point 287

and excitation in z direction at point 130; solid line) and measured receptance FRF (response R33 in z direction at point

130 and excitation in z direction at point 287; solid-dotted thick line).
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difference in peak amplitude, for plate MOD, is –0.64%. The relative difference in peak frequency
location, is 0.06%.
For the validation of the FE predictions, the effect of air damping and damping from the

suspension should also be noted. Each of these damping sources may give significant
contributions to the total system damping of the suspended plates, cf. Refs. [19,20]. However,
for the experimental studied Al-PMMA test plates these loss factors are each estimated to be in
the order 10�4. The test structure REC has rather high loss factors ranging from 0.02 to 0.04 in
the studied frequency interval, i.e., 200–400 times larger, and the influence of air and suspension
damping are thus negligible compared to the damping of PMMA. It is also clear from measured
FRFs that the PMMA plays an important role in the vibration response of the composite
Al-PMMA structure. This effect may be seen by comparing the first measured resonance
frequency 125Hz of the REC plate, cf. Figs. 4 and 5, and the corresponding frequency of a
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Fig. 6. Reciprocity check for plate MOD between measured receptance FRF (response R33 in z direction at point 291

and excitation in z direction at point 269; solid line) and measured receptance FRF (response R33 in z direction at point

269 and excitation in z direction at point 291; solid-dotted thick line).
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Fig. 7. Reciprocity check for plate MOD between measured receptance FRF (response R33 in z direction at point 291

and excitation in z direction at point 120; solid line) and measured receptance FRF (response R33 in z direction at point

120 and excitation in z direction at point 291; solid-dotted thick line).
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homogeneous Al plate with the same dimensions, predicted to 230Hz. The first eigenfrequency for
the Al plate is evidently very different from the REC plate. The vibration response level also
depends strongly on the losses in the material. For the REC plate the loss factors Z range from
0.02 to 0.04 in the frequency interval 50–500Hz. These losses are less than the loss factors of
PMMA (0.05–0.08) but still large compared to the loss for Al (with Z in the order of 10�4), thus
indicating that the losses in the REC plate are strongly dominated by PMMA.

4.4. Comparison of predicted and experimental receptances

Receptances Rik were calculated for all measurement points on the test structures, in the
frequency interval 100–500Hz for plate REC and 50–500Hz for plate MOD, with a frequency
resolution of 2.5Hz.
To evaluate the large amount of data involved, some statistical analysis was performed. For

each peak in amplitude of the simulated receptance the difference, between predicted and
measured response, in amplitude level and in frequency of the peak, were calculated. Following
this, the mean value of the differences in peak amplitude and peak frequency were then calculated.

4.4.1. Validation on plate REC

A selection of the results of the direct FE calculations for plate REC are shown together with
the measured receptances in Figs. 8–11. From visual inspection it may be concluded that, the
agreement between simulated and measured vibration spectra is in general very good. The relative
mean of the peak amplitude difference, based on all five response peaks, for plate REC was found
to be 1.95% while the relative mean difference in the frequency of the peaks was �0.66%. The
relative mean of the peak amplitudes for each of the five response peaks are shown in Fig. 12a and
listed in Table 4 together with the relative mean difference in the frequencies, Fig. 12b. These
values should be viewed in relation to experimental reciprocity discussed in Section 4.3, i.e., a
mean relative difference in amplitude of �0.68% and a mean relative difference in peak frequency
of �0.19%.

ARTICLE IN PRESS

100 200 300 400 500

10
-7

10
-6

10
-5

10
-4

Frequency (Hz)

M
ag

ni
tu

de
 (

m
/N

)

Fig. 8. Measured (solid line) point receptance FRF for plate REC (response R33 in z direction at point 130 and

excitation in z direction at point 130) and direct FE calculation (solid-dotted line).
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Fig. 9. Typical measured (solid line) transfer receptance FRF for plate REC (response R33 in z direction at point 380

and excitation in z direction at point 130) and direct FE calculation (solid-dotted line).
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Fig. 10. Typical measured (solid line) transfer receptance FRF for plate REC (response R33 in z direction at point 223

and excitation in z direction at point 130) and direct FE calculation (solid-dotted line).
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Fig. 11. Typical measured (solid line) transfer receptance FRF for plate REC (response R33 in z direction at point 287

and excitation in z direction at point 130) and direct FE calculation (solid-dotted line).
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4.4.2. Validation on plate MOD

A selection of the results of the direct FE calculations for plate MOD are shown together with
the measured receptances in Figs. 13–16. Also for this test case, visual inspection leads to the
conclusion that the agreement between simulated and measured vibration spectra is in general
satisfying. The relative mean of the peak amplitude difference, based on all six response peaks, for
plate MOD was found to –0.92% while the relative mean difference in the frequency of the peaks
was –0.53%. The relative mean of the peak amplitudes for each of the six response peaks are
shown in Fig. 17a and listed in Table 5 together with the relative mean difference in the
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Fig. 12. (a) Peak amplitude level and (b) peak frequency difference between measured and AHL simulated receptance

on plate REC. Evaluated for all 35 receptance FRFs at five response peaks. (*=amplitude difference, o=frequency

difference).

Table 4

Mean differences for plate REC at five resonance peaks

Peak number Peak frequency in exp FRF (Hz) Mean value amplitude (%) Mean value frequency (%)

1 130.0 6.37 �0.28
2 297.5 2.15 �0.79
3 347.5 3.08 �1.07
4 392.5 �2.40 �0.53
5 480.0 0.53 �0.65
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Fig. 13. Measured (solid line) point receptance FRF for plate MOD (response R33 in z direction at point 291 and

excitation in z direction at point 291) and direct FE calculation (solid-dotted line).
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Fig. 14. Typical measured (solid line) transfer receptance FRF for plate MOD (response R33 in z direction at point 379

and excitation in z direction at point 291) and direct FE calculation (solid-dotted line).
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Fig. 15. Typical measured (solid line) transfer receptance FRF for plate MOD (response R33 in z direction at point 269

and excitation in z direction at point 291) and direct FE calculation (solid-dotted line).
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frequencies, Fig. 17b. Comparing these to the experimental reciprocity discussed in Section 4.3,
i.e., mean relative difference in amplitude –0.64% and mean relative difference in peak frequency
0.06%, reveal that the discrepancy between the simulations and the measurements is of the same
order as the observed lack of experimental reciprocity.
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Fig. 16. Typical measured (solid line) transfer receptance FRF for plate MOD (response R33 in z direction at point 120

and excitation in z direction at point 291) and direct FE calculation (solid-dotted line).
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Fig. 17. (a) Amplitude level and (b) peak frequency difference between measured and AHL simulated receptance on

plate MOD. Evaluated for all 46 receptance FRFs at six response peaks. (*=amplitude difference, o=frequency

difference).
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4.4.3. Discussion of results from comparison

Evidently, the two FE models, based on isotropic material damping functions, provide accurate
simulations of the measured vibration responses in the studied frequency intervals.
The damping parameters used in the predictions were estimated from frequency response data

collected in tests on separate sheets of PMMA while here, in the response measurements, PMMA
was glued to an Al sheet. Thus, it may be argued that the estimated constitutive damping
parameters are accurate and independent of boundary conditions.
Furthermore, the PMMA sheets used to provide estimates of the damping parameters were

rectangular while plate MOD is an L-shaped layered plate. Thus, the estimated damping model
used is valid independent of geometry and size variations used here.
For plate REC, it is illustrative to study Fig. 4 and compare with Fig. 10. The slight lack of

experimental reciprocity (mainly an amplitude difference) found in the anti-resonances between
points 130 and 223, Fig. 4, is visible as a corresponding amplitude difference between simulated
and measured frequency response function between excitation at point 130 and response at point
223, Fig. 10.
The situation is slightly different when points 130 and 287 are compared. The lack of

experimental reciprocity, Fig. 5, is small up to about 380Hz. Simulated and measured frequency
response curves, Fig. 11, agree in amplitude while there is a clear frequency shift downwards in the
simulation results throughout the whole studied frequency range.
For plate MOD, observed experimental reciprocity is in general excellent, see Figs. 6 and 7,

with the only exception of importance occurring at around 450Hz for points 120 and 291. The
agreement between simulated and measured frequency response is correspondingly very good,
Figs. 13–16, with one exception. For excitation applied at point 291 and response in point 269,
Fig. 15, the simulated response does not exhibit the resonance peak at 460Hz, despite excellent
measurement reciprocity for these two points, Fig. 6.
Thus, in general the simulated responses agree with the measured when the observed

experimental reciprocity is satisfactory. For plate REC, the lack of experimental reciprocity and
also the agreement between simulation and measurement is worse than for plate MOD. The main
reason for this is that the excitation applied for plate REC is further away from the mass centre of
the plate than for plate MOD. This induces a rigid body rotational component of plate REC,
affecting both reciprocity and FRFs, which is seen as a systematic shift of the peak frequencies for
excitation in point 130 point.
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Table 5

Mean differences for plate MOD at six resonance peaks

Peak number Peak frequency in exp. FRF (Hz) Mean value amplitude (%) Mean value frequency (%)

1 77.5 1.27 �1.63
2 130.0 2.98 �0.29
3 220.0 0.11 �0.55
4 272.5 �5.44 �0.30
5 387.5 �0.09 �0.22
6 475.0 �4.35 �0.17
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Obviously, there are a multitude of sources of discrepancies between the simulation and
the measurement. Examples of these are: the simulation assumes a point force while in the
measurement a distributed load (the attachment of the dynamic shaker) is applied; here only the
normal component of the excitation is measured (by the force transducer) while neglecting
contribution from unmeasured lateral and moment excitation; the simulation model assumes a
uniform thickness of the PMMA sheet while in the test set-up a variation in thickness of 10% is
observed; the simulation model assumes a perfect bonding with a negligible thickness of the
glueing layer between the PMMA and the Al sheets while the real bonding layer has a finite and
possibly varying thickness. Of these the first two points, i.e., the effects of the applied excitation
has been discussed by Maia et al. [21] and Olbrechts et al. [22].

5. Summary

A vibration simulation, for two different PMMA-Al plates, is established, based on
experimentally determined elasticities and material damping functions, and direct FE calcula-
tions. For the two materials the relevant parameters, i.e., mass density, elastic data and
isotropic material damping parameters, have been estimated separately. The first question to be
answered during this investigation has been concerned with the ability to estimated isotropic
elasticities and material damping functions, to predict vibration responses from knowledge about
the separate parts, in a built-up structure. Secondly, strengthen the fact that the material
parameters are indeed, material properties, rather than system properties of the test used to
determine them. This is demonstrated by comparisons between measured vibration responses and
numerical predictions using direct FE calculations. The simulated results show excellent
agreement with the measurements in the whole frequency interval 50–500Hz, respectively. It is
further argued through experimental reciprocity considerations, that the contribution to
differences between measurements and simulations mainly come from uncertainties in the
vibration measurements.
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Appendix A. Definitions

The Cartesian matrix representations u; r and e of the displacement field and the symmetric
stress and (infinitesimal) strain tensor fields, respectively, are defined as:

u ¼ uðx; tÞ ¼ u1 u2 u3
� �T

; ðA:1Þ
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r ¼ rðx; tÞ ¼ s11 s22 s33 s12 s23 s31
� �T

; ðA:2Þ

e ¼ eðx; tÞ ¼ e11 e22 e33 2e12 2e23 2e31
� �T

; ðA:3Þ

eik ¼
1

2

@ui

@xk

þ
@uk

@xi

� 	
; ðA:4Þ

where ui; sik and eik are Cartesian vector and tensor components. The elastic generalized Hooke’s
law is expressed as

CN ¼ GCG þ lCl; ðA:5Þ

where the only non-zero elements of the real, constant ð6
 6Þ-matrices Cl and CG are:

ðClÞik ¼ 1; i; kp3; ðA:6Þ

ðCGÞii ¼ 2; 1pip3; ðCGÞii ¼ 1; 4pip6: ðA:7Þ

The Lame moduli G (shear modulus) and l; expressed in Young’s modulus E and the Poisson
ratio n ð�1ono0:5Þ; are

G ¼
E

2ð1þ nÞ
; ðA:8Þ

l ¼
2nG

ð1� 2nÞ
: ðA:9Þ
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